Machine Learning 2 - Advanced methods
- Type: Lecture (V)
- Semester: SS 2024
-
Time:
Fri 2024-04-19
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-04-26
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-05-03
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-05-10
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-05-17
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-05-31
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-06-07
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-06-14
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-06-21
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-06-28
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-07-05
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-07-12
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-07-19
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
Fri 2024-07-26
09:45 - 11:15, weekly
20.40 Neuer Hörsaal Architektur
20.40 Architekturgebäude (EG)
-
Lecturer:
Prof. Dr.-Ing. Johann Marius Zöllner
Marcus Fechner
Nikolai Polley - SWS: 2
- Lv-No.: 2511502
- Information: On-Site
Content | The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects. The lecture "Machine Learning 2" deals with modern advanced methods of machine learning such as semi-supervised, self-supervised and active learning, deep neural networks (deep learning, CNNs, GANs, diffusion models, transformer, adversarial attacks) and hierarchical approaches, e.g. reinforcement learning. Another focus is the embedding and application of machine learning methods in real systems. The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (vehicles, robotics, neurorobotics, image processing, etc.). Learning objectives:
Recommendations: Attending the lecture Machine Learning 1 or a comparable lecture is very helpful in understanding this lecture. |
Language of instruction | German |
Bibliography | Die Foliensätze sind als PDF verfügbar Weiterführende Literatur
Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben. |